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Abstract

The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are
presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector
! is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive
| problem are highly effective in the solution of the two-point boundary-value problem associated with bounded
thrust. These results were applied to the problem of fuel optimal manuvers of a spacecraft near a satellite in circular
orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using
a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the
satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the
solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in
the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the
eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.
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1 Introduction

Many problems of optimal trajectories, maneuvers, and rendezvous of spacecraft have been investigated using linearized equations
of motion. Linear equations describing the relative motion of a spacecraft near a satellite in circular orbit [1-4] have been very
useful to aerospace researchers. Some of the published applications are cited here [5-8]. The linear equations describing relative
motion near a satellite in an elliptical orbit [9,10] are not quite so well known, but have also been useful in applications [11-
16]. These equations also generalize to a description of relative motion near a satellite in an arbitrary Keplerian orbit [17,18].
Another approach to similar problems involves the linearization with respect to the orbital parameters associated with a satellite
or spacecraft [19]. Other sets of linearized equations describing the motion of an object near one of the five Lagrange points in
the restricted three body problem are well known in celestial mechanics [20].

In this paper we present necessary and sufficient conditions for fuel-optimal trajectories of a spacecraft whenever the
equations of motion are linear. This theory encompasses all of the preceeding examples in which the equations of motion of a
spacecraft are usefully linearized about an equilibrium condition [1-20].

The work divides naturally into two distinct areas, impulsive problems, and bounded thrust problems, and is based largely
on recent investigations [21,22] in these two areas. Early work on these problems was done by Neustadt [23,24] who formulated
the linear impulsive spacecraft trajectory problem mathematically as an unbounded thrust problem in a class of more general
nonlinear programming problems. He obtained an existence theorem and necessary conditions for solution of this problem. He
presented also a precise sense in which the impulsive problem solution is a limit of the bounded thrust problem solution as the
bound becomes arbitrarily large, and showed that the necessary conditions for the impulsive problem are obtained from the
necessary conditions for the bounded thrust problem by passing to the limit.

Our approach differs significantly from Neustadt’s, especially in the impulsive problem. We formulate this problem through
the use of a finite number of velocity increments as independent variables instead of thrust functions having unbounded range.
This results in a simpler problem that can be solved without the use of mathematical control theory or advanced mathematics.
The bounded thrust problem is then solved by the well known Principle of Pontryagin. It is found that the two problem solutions
are closely related, and insight into either problem is sometimes obtained from the other. Probably the most useful relationship
is the fact that both problems are found to contain the identical new form of the primer vector function originally defined by
Lawden [25].

It is shown that a class of two-point boundary-value problems associated with bounded thrust can be readily solved from
starting iteratives that are obtained from a primer vector function associated with the impulsive problem.

Section two demonstrates necessary and sufficient conditions for solution of the impulsive minimum fuel problem with
linear equations of motion. At the end of the section this material is applied to the case of a spacecraft near a circular orbit
using the Clohessy-Wiltshire {1-4] equations of motion. Simulations of impulsive spacecraft trajectories are presented. In section
three, necessary and sufficient conditions are also revealed for solution of the related bounded thrust minimum fuel problem.
Simulations of optimal bounded thrust spacecraft trajectories near circular orbit are also presented for this problem using the
same equations of motion. The final section indicates how this material can be applied for a spacecraft near a non circular
Keplerian orbit. The Tschauner-Hempel equations of motion [9,10] are applicable to this problem. The work of Tschauner and
Hempel and Weiss [15] has demonstrated that solutions of these equations can be used to define a fundamental matrix solution
that applies to either circular or elliptical orbits. This work was found useful in constructing two-impulse solutions to rendezvous
problems involving objects in elliptical orbits of high eccentricity [16] and can also be used to apply the theory presented here
for rendezvous of a spacecraft with objects in circular or elliptical orbits. We complement this work by presenting a new form
[18] of the solution of the Tschauner-Hempel equations that is valid for elliptical, parabolic, or hyperbolic orbits, and that avoids
the removable singularities found in some earlier papers. This form of solution is then used to construct a fundamental matrix
solution. Based on this fundamental matrix solution, the theory of sections two and three can be applied to the problem of fuel
optimal rendezvous of a spacecraft with an object near a satellite in a general Keplerian orbit.

2 The Impulsive Minimization Problem

2.1 The Impulsive Problem Formulation

We let m and n be positive integers, and zo, vo, Z5, vf, Av; (8 = 1,...,n) are all elements of the m-dimensional Euclidean
space R™. The real numbers 8y and 85 define a bounded interval © = [60,8]. We denote the generalized instantaneous position
and velocity of a spacecraft respectively by z(¢) and v(f) in R™ where § € © represents a convenient independent variable
such as the normalized time in flight, applications the true anomaly of a satellite in Keplerian orbit. [10,17] A prime is used
to indicate differentiation with respect to 8. The norm or magnitude of any vector will be represented by the symbol | . | .
The symbol x will be used with reference to rows and columns of a matrix or will denote the Cartesian Product of sets. The
superscript T refers to the transpose of a matrix or vector. For each § € © the vector y(6) € 2™ refers to the transpose of the
pair (2(0)7,v(8)T). Similarly the vectors yo and ys in R*>™ denote respectively the transposes of (zZ,vJ) and (z?,v?). We
assume that a velocity increment Av; is added to the velocity v(6;) of the spacecraft at a point 8; (i =1, ...,,n). This assumption
represents an idealization of the effect of the application of n short duration thrusts to the spacecraft, resulting in instantaneous
changes in velocity without change in position. This type of idealization is in common practice by mission planners and can
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be useful in providing approximate data for iterative schemes to solve problems having more accurate models. The n points of
application of the velocity increments can be specified a priori by the mission planner. Another possibility is that the locations
of these velocity increments be determined through the optimization process. Our approach is flexible enough to include either
of these possibilities or a combination of the two.

Specifically we let p be a positive integer that represents the number of elements in © that are specified a priori, and
Np = (81,..-,85,) € OF is this ordered set of specified points in © where velocity increments are to be applied. For technical
reasons we shall require that both end points 6y and 4 s are in Np so that p > 2. We also specify an integer r 2 0, and we shall
seek an ordered set Ny = (fx,,...,0k,) € O of r elements of © that are to be determined through the optimization process, and
that represent optimum locations for the application of velocity increments. If r = 0 then N, is empty. We now set n = p +r,
order the components of (N, N,) € ©" to form the ordered set (61,...,6n) € O™ where 6; < ;41 (i=1,..,n— 1). We observe
that it is possible to have 6; = 8, for i # j. We associate a velocity increment Av; with each 6; (1 =1,...,n) even though the
optimization process may show some of these velocity increments to be zero. Although we associate velocity increments with
the end points 6y and 8, there are problems where one or both of these velocity increments become zero. We now define the
impulsive optimal spacecraft trajectory problem for linear equations of motion as follows:

2.1.1 Statement of the Linear Impulsive Minimization Problem

Having specified N, and the integer r, find N, = (x,, -~ 8k,) € O and the velocity increments Ay; € R™ (i=1,..,n)
which are added to the velocity vectors v(8;) € R™ (i =1, ..., n) in order to minimize the total characteristic velocity

J= Z |Av;f (1)

i=1

of a spacecraft, whose motion is defined by the linear differential equation

¥'(8) = A(9)y(6) (2
foreach § € O exceptat¥; (i=1,..., n), where A is a 2m x 2m real matrix-valued function continuous on ©, and whose initial
and terminal conditions are given by

¥(6o) = vo, y(6y) = Ys- (3)

2.1.2 Fundamental Matrix Solution

It is known from the theory of linear differential equations that a 2m x 2m fundamental matrix solution which we shall denote
by ®(6) is associated with the linear differential equation (2), its elements are continuously differentiable, its inverse o(9)~?
exists and its elements are also continuously differentiable, for each 8 € ©. As we shall show, the 2m x m matrix which consists
of the last m columns of ®(8)~! (i.e., the right hand half of ®(6)"") plays an important role in the determination of the optimal
impulses and will be denoted by R(#). Because of the continuity of A(8) the 2m x m matrix R(#) of real-valued functions is
continuously differentiable on ©. Moreover if the elements of A(0) are analytic on ©, then the elements of R(6) are known to
be analytic on © also. Our principal result, as presented in the next section, is stated in terms of the matrix R(6), and the first
step in solving actual problems is to determine the matrix R(9).

2.2 Necessary and Sufficient Conditions

As we shall see, the effects of the initial and terminal positions and velocities (3) in defining an optimal solution are determined
exclusively through the vector b € ®*™ which is defined as follows:

b=®(8;)""ys — ®(60) " y0. 4

A family of initial and final positions and velocities having the same value of the vector b is associated with a family of problems
having identical optimal impulsive solutions.

In the following we define a; =| Av; | (i =1, ..., n) and for each 1 such that a; # 0 we define u; = Av;/a;. These are simply
the magnitudes and the unit direction vectors of the nonzero velocity increments. We now state our principal result as follows:

Theorem 2.1 Suppose that b is nonzero, A(6) ezists and is continuous on @, and N, contains both of the end points o
and §; of ©. Then for eachr =0,1,2,... and n = p+r, the element (6x,, ..., 0k, , Avs, ..., Av,) solves the minimization problem
defined by (1 — 3) subject to the imposition of the n velocity increments, over the set ©" x R™" if and only if there exists a
nonzero vector A € R°™ such that

a; =0 or u; = —R(9.’)T/\ (i=1,..,n) (5)
ai=0o0r ATR(:)R(6:)"A=1(i=1,..,n) (6)
ak, =0, or 8, = 0o or O, =05 or ATR'(8,)R(6x,)"A=0(i=1,..,7) (7
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> (R R(6:)T Neri = —b (8)

=1
@i>0(i=1,.,n) ()
D ai=—b"A>0 (10)
=1
— T\ is @ minimum on the set{\ € R°™ | (6 — 10) is valid}. (11)

A proof of this theorem is presented in [21). The requirement that & is nonzero in this theorem prevents the problem from
becoming trivial. If & = 0 then the minimization problem can be solved by setting Av; = 0 (i = 1,..,n). In applying this
theorem to actual problems one specifies the number r of points of application of velocity increments to be determined by the
optimization process. Of course, the choice of the number r affects the solution of the minimization problem defined by (1-3)
and the resulting minimum value of J. Although the proof introduces some additional mathematical framework and will not be
considered here, it can be shown that if the elements of A(8) are analytic functions of 9 then there is an integer r* such that
the solution of the minimization problem for r > r* does not lead to a lower value of J than does the solution for r+. One
consequence of this fact is that Np has no effect on the minimum value of J if the integer r is sufficiently large. For this reason, if
r is sufficiently large, then there is no loss in generality in making the assumption that Ny contains the elements 6o and 5. The
determination of the smallest such integer r+ for a wide class of problems defined by (1-3) is a problem whose solution would
reveal to the mission planner the maximum number of thrust impulses needed for a mission. Neustadt’s work [23] would suggest
that r+« < 2m. We can sometimes keep the value of r general. If in the determination of the locations for velocity increments,
we obtain 8; = 8; for i # j (i.e. repeated roots) then the value of + can be lowered without altering the minimum value of J.

2.2.1 The Primer Vector Function

Some of the results of this theorem can be interpreted in terms of the well known primer vector theory, introduced by Lawden [25]
and developed for impulsive spacecraft trajectory applications by Lion and Handelsman [26,27]. We shall refer to the function
q: © — R™ defined by ¢(9) = R(6)7 X as the primer vector function. In terms of this function, (6) and (7) respectively become

ai=00r|gd)|=1(3=1,..,n) (12)

ok, =0, or Ok, =00, or Ok, = 05, or |g ) '=00G=1,..,1). (13)

Geometrically, this says that nonzero optimal impulses must occur where the magnitude of the primer is unity and, if they are
at interior points of ©, where the magnitude of the primer is tangent to a horizontal line one unit above the horizontal axis.
This and other related geometric conditions were observed by Lion and Handelsman, even though the class of problems under
their investigation was very different from the above.

2.2.2 A Priori Specification of Velocity Increments

As previously indicated, this theorem is presented in such a way that the mission planner can specify some of the locations of the
velocity increments a priori. It can be made even more flexible by allowing the mission planner also to specify completely some
of the velocity increments a priori, as well. This is accomplished as follows. We assume that an additional s velocity increments
are completely specified by the mission planner where s is a positive integer, and Np is extended to include the locations of these
velocity increments. The total number of velocity increments is then n+s, and the s completely specified velocity increments will
be denoted Avpy1, ..., Avnys With respective locations 8at1; s Onts € Np. The Theorem can be restated with this adjustment
and only minor changes in the proof are necessary. The principal change occurs in Lemma 4.1 of the next section where the
vector b is adjusted as follows:

s
b=9(8)"" = $(80) "o — 3 R(Bnt,)A%n4;
3=1
This definition of b replaces (4) only in the following adjusted result:

Theorem 2.2 Suppose that b, as defined above, is nonzero, A(8) ezists and is continuous on ©, and that s velocity
increments Avnya,...,Avngs € R™ are specified a priori and N, contains their respective locations On41,...,0n4e and the end
points 8o and 8; of ©. Then for each r = 0,1,2,... and n = p— s+, the element (Ok,, -, 0k,, Avi, ..., Avy) solves the
minimization problem defined by (1-3), subject to the imposition of the n + s velocity increments, over the set ©7 x R™” if and
only if there exists a nonzero vector A € R2™ such that (5-11) are satisfied where b is defined above.
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2.3 Applications

This approach to the solution of the minimization problem defined by (1-3) requires solving the system (5-11). The primary
computational problem is in the solution of (6-8) which are quadratic in A and linear in a; (i = 1, .,n). In most application
to spacecraft trajectories, the position and velocity vectors of the spacecraft are in three dimensional Euclidean space so that
m = 3, or if the motion is restricted to an orbital plane, m = 2. If the equations of motion of the spacecraft are based on
linearization about a satellite in circular or Keplerian orbit, we conjecture that it is not necessary to employ more than four
impulses for one orbital period or less (§; < 8, + 27), so we recommend setting n = 4 for these problems. This is in agreement
with a similar conjecture which was made for bounded thrust problems. [28,29] Neustadt’s results [23] for the general linear
unbounded thrust problem show that the maximum number of impulses is 6 for m = 3 and 4 for planar problems.

2.3.1 Types of Problems
We list the following types of problems:

1. Planar problem with four impulses with specified locations. Here (6) presents four quadratic equations in four unknowns
to determine A. For some cases these can be solved by hand or by a computer programmed for symbol manipulation.
Half of these solutions are eliminated by the test —bTX > 0 of (10). The remaining solutions are used in (8) to solve for
@1,...,an by Gauss-Jordan elimination. All that do not satisfy (9) are thrown out. Usually only one solution remains
after this test. If more than one solution remains, the value or values of A that satisfy (11) are retained, and from this the
velocity increment directions are determined through (5)- An outstanding feature of this problem is that a change in the
initial or terminal conditions does not require a solution of (6) again. The solutions of (6) are a set of vectors like spokes
on a wheel, any one of which may point out the correct solution. A change in the boundary conditions defines another
vector from the set which satisfies condition (6) and defines the optimal impulses only through the solution of sets of linear
equations (8) to determine an, ..., @, and then applies the tests (9-11). An example of this type of problem is presented
in the next section.

2. Four impulse planar problem with intermediate locations determined optimally. For this problem (6) and (7) determine
a set of six equations in the six unknowns ), 6, and 6;. After obtaining multiple solutions of these, the tests (9) and (10)
and the linear equations (8) can be used as in the preceding. For practical problems it may be preferable computationally
only to approximate the solution of 8, and ;. We guess the locations 6, and 65 and solve the preceding problem 1). We
repeat this process several times with new values of 6, and 8;. We then pick the set which most closely approximates (7)
. In this manner (7) can be approximated to any desired accuracy. An alternative is to use gradient methods on 6, and
63 to minimize J.

3. Four impulse three dimensional problem with specified locations of impulses. In this case (6) and (8) define a set of 10
equations in the 10 unknowns X, a1, a2, a3, as. Each solution of this system is subjected to the tests (9) and (10) as in
the previous problems. In case of multiple solutions, the test (11) is applied.

4. A two impulse solution with impulses at the ends. Rather than using the equations (5-11) for this trivial problem, it is
easier to use Lemma 4.1 from a recent work [21] and solve for the two impulses through the linear equations

R(Go)Avo + R(0,)Avf =b. (14)

This method is computationally simpler than the two impulse method of Weiss [15] used for high eccentricity elliptic orbits.

2.3.2 Spacecraft Maneuvers near Circular Orbit

As an application, we consider the problem of determining optimal maneuvers of a spacecraft near a satellite in circular orbit.
The linearized equations of motion with reference to a coordinate frame fixed in the satellite were determined independently
by Wheelon, Clohessy and Wiltshire, Geyling, and Spradlin [1-4]. With these equations, optimal impulsive solutions were
investigated by Prussing [6] in 1969 using primer vector theory. Our approach is to find and invert a fundamental matrix
solution, and apply Theorem 2.1. The equations of motion when put in the state vector form y!(t) = A()y(t), are determined
by the 6 x 6 matrix

0 o 0 1 0o 0
0 0 0 0 1 0
6 0 0 ) ¢ 1
= 5
A(t) 0 o 0 0 2w 0|’ (15)
0 3.° 0 —2w 0 0
0 0 —-w? o 0 0
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Table 1: The sixteen solutions of Eq.(6) for a planar

circular orbit

1 2 3 4
1| A\ | 0.065987656 | 0.106065818 | -0.065987656 | -0.106065818
X2 | -0.621919006 | -0.999647 0.621919006 0.999647
X3 | -0.651106246 | 0.2387088 0.651106246 -0.2387088
A | O 0 0 0
2 | A\; | -0.098201378 | -0.098201378 | -0.098201378 { 0.098201378
Az | -1.798123431 | 0.052928935 1.798123431 | -0.052928935
A3 | -0.182280857 | 0.182280857 0.182280857 -0.182280857
Ay | 0.436298624 0.436298624 -0.436298624 | -0.436298624
31 A\ 1]0 0 0 0
-3
A2 |1 = -1 %
A3 | 0 0 0 0
MO : 0 =t
4 A |0 0 0 0
A2t O 0 0 0
N | B v A 5
5 5 B 5
A | B V5 _V5 5
3 5 5 5

where the real number w is the orbital angular speed of the satellite, and the flight time is denoted by t. It is not difficult to
find and invert a fundamental matrix ®(t) associated with A(t), and obtain

1 —66(t) 0 36(1) 2 0
0 -2 0 1 0 0
—1_ | 0 3siné(t) 0 —2sinf(t) —cosf(t) 0
o) = 0 —3cosf(t) 0 2cosf(t) —sinf(t) 0 (16)
0 0 sin 6(t) 0 0 cosd(t)
0 0 cos 6(t) 0 0 — sin 4(t)

where 8(t) = wt. From (16) R(t) is evident. We drop the argument ¢ and consider 6 as the independent variable.

We shall consider only the planar case. For this problem we find the 4 x 2 matrix

36 2
1 0
R(6) = —2sinf —cosf |’ (17)
2cos8  —sinf

For simplicity we shall pick 8, = 0,85 = 2x, and we shall select four impulses at 0,7/2, 37/2, and 2x. Based on earlier studies
for optimal trajectories with bounded thrust [8] we suspected that these locations are not far from the optimal locations. After
computation of the X values based on these locations, this suspicion was confirmed by substituting these values of 8; into (7).
The values of the matrix R(6;) (i = 1,2,3,4) are easily obtained so that (6) is a manageable set of four quadratic equations
in the four unknown components of A; A1, A2, Az, As. Solution of these four quadratic equations reveals the following 2* = 16
solutions which we denote by Xij (i,5 = 1,2,3,4). These solutions are presented in Table 1. We consider three distinct sets of
initial and terminal conditions for computation of the optimal impulses using the method outlined in 1) of Section 2.3.1. We
find that each of the three cases requires a different value of A from Table 1, and a different number of impulses for optimality.
(We neglect very small impulses, and assume that they are zero because of their negligible effect in comparison with much larger
impulses in the same case.)

Case 1. A spacecraft is one unit behind a satellite in the same circular orbit. Its initial relative velocity is zero, and
its object is to rendezvous with the satellite having the same velocity at §; = 2r. The tests (8-11) determine A12 as optimal.

For this value of X, the solution of (8) establishes that az = @3 = 0, a two impulse solution. The optimal impulses are both
horizontal and opposite:

Av(0) = [ gl’? ],Av(27r)= [ ?’L ]

A computer simulation of the optimal trajectory is presented in Figure 1.
Case 2. A spacecraft is one unit above a satellite in circular orbit with the same initial velocity as the satellite. Its object
is to rendezvous with the satellite at #; = 27 having the same final velocity. For this problem the tests (8-11) determined A21
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0.0 v X,

0.0

Fg. 1. Optimal trajectory with two impulses.
x(0)T = (1,0),7(0)T = (0,0), x(2r = (0,0),X2m)T = (0,0)

T

Avy

X

‘AVF/ AV1
0.0 End

2

0.0

Fig. 2. Optimal trgjectory with three impulses.
X(0)T = (0,1), X0)7 = (0,0), x(2)T = (0,0), W2m)T = (0,0)

X
Av.
0.0 5 ! z N X
AVF AVo '
AV2
0.0

Ag. 3. Optimal trojectory with four impluses.
x(0)7 = (1,0),7(0)T = (0,0), x(2r) = (0,0),2X2m)7 = (0,0.427)
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as optimal. For this value ), eq.(8) defined a3 =0, a three impulse solution. The optimal impulses are
1.6294 L .39010 —.06332
av(0) = [ —.66667 ] au(z) = [ 09640 ] » Av(2m) = [ —.02591 ] :
A computer simulation of the optimal trajectory using these impulses is found in Figure 2.
Case 3. A spacecraft is in circular orbit one unit behind the satellite with the same velocity as in Case 1, but in this case

its object is to reach the satellite with a positive vertical velocity. This causes quite a different trajectory from Case 1. The
optimal A changes to A22 and a four impulse solution results. The optimal impulses are

—.02729 x 08965
Av(0) = [ 03436 ] Av(g) = [ 01194 ] ’

3 —08965 .02729
Av(—l) = [ ) ] ,Av(2x) = [ 03436 ]

The optimal trajectory is presented in Figure 3.

Each of the figures can be compared with similar figures in [8] which are based on bounded thrust and continuous velocity.
The similarities in the shapes are apparent.

Extension of this work to other Keplerian orbits requires the replacement of the Clohessy-Wiltshire equations with the
Tschauner-Hempel equations [9,10] for elliptical orbits or the equations in [18] for more general orbits. For the Tschauner-Hempel
equations the fundamental matrix solution has been found and inverted by Weiss [15], so that the matrix R(6) can be defined.

3 Bounded Thrust Space Trajectories
3.1 The Bounded Thrust Minimization Problem

We let m be a positive integer and zo, o, Ts,vs are elements of the Euclidean Space R™. The real numbers ¢, and t; define a
closed and bounded interval T' = [t,, t;] where t, < t;. A dot above a variable will denote differentiation with respect to t € T.
The Euclidean norm or magnitude of a vector will be referred to by the symbol | | . The superscript T denotes the transpose of
a vector or a matrix. The elements yo and y; in R*™ are defined by yJ = (z3,v;) and y7 = (z},v}). We let U denote the
class of admissible control functions, which is the set of all Lebesgue measurable functions that map T into the closed unit ball
Uin R™ a.e. on T.

We shall consider the linear nonhomogeneous differential equation

9(t) = A(t)y(t) + Bw(?) (18)

which is defined a.e. on T subject to the initial condition

y(to) = ¥o, (19)

and the terminal condition

y(tf) =Y5 (20)
where A is a real 2m x 2m matrix valued function on T, w(t)T = (o7, u(t)T) where 0 is the zero element in R™,u € U, and Bisa
positive real number. We shall assume throughout that the elements of A are real valued analytic functions on T'. A solution y
of (18) at t € T is an element of 2™ and we shall write ()T = (z(1)7, v(t)T) where z(t) € R™ and v(t) € R™ for each t € T.
We define the cost of any element u € U to be

Tal= [ 1w (21)

o
which represents the Lebesgue integral of the norm of u over T. Here we are assuming that a spacecraft has constant exhaust
velocity, and that its total fuel consumption over the interval T is proportional to J[u]. The linear bounded thrust minimization
problem can therefore be stated as the problem of minimizing J[u] over & subject to the conditions (18 - 20).

Many spacecraft maneuvers and rendezvous missions can be formulated in terms of this problem. In these cases the equa-
tions of motion of a spacecraft are approximated by the linear equations (18) where ¢ represents a flight time or related variable
such as the true anomaly of a satellite in Keplerian orbit, and fu(t) usually represents an applied acceleration on the spacecraft
caused by the engine thrust. The problem is a bounded control problem because of the restriction that u € U (i.e. | u(t) |[<1
a.e. on T). For simplicity, we assume the spacecraft mass is constant over T so that B is a positive constant representing the
maximum magnitude of the applied acceleration. We can, however, include the effect of the variation of mass as in previous
work [29]. To avoid an additional equation that is nonlinear, we shall not do this. If the matrix A(t) is partitioned into four
m x m matrices so that the top left is zero and the top right is the m x m identity, then £(t) = v(t), and if ¢ represents time in
flight then the elements z(t) and v(t) can be interpreted respectively as relative positions and velocities of the spacecraft.
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3.2 Necessary and Sufficient Conditions

Before we present our principle result, we shall place a restriction on the matrix A(t) that will simplify the solution of the
minimization problem by eliminating singular abnormal solutions. The matrix A(t) can be partitioned into four m x m matrices

as follows:
A(t) = ( ot e ) (teT). (22)

We shall say that the matrix valued function A is primer-compatible if the only solution of the two equations
Az2()Tp(t) = 0, p(t) = —Au1(t)Tp(t) (23)

on T is the solution p(t) =0 (¢ € T). It is readily seen that A is primer-compatible if Aj2(t) is nonsingular for each t € T. For
this reason we see that in the usual problems in which z(t) = v(t) for each t € T the matrix A is primer- compatible because
A2(t) = I the m x m identity matrix. By differentiating we see also that A is primer-compatible if A;2(t) — A11(t)Ar2(t) is
nonsingular for each ¢ € T. Other conditions for primer-compatibility can be obtained by differentiating further.

We now present our principal result. The proof can be found in [22].

Theorem 3.1 Suppose that the elements of the 2m x 2m matriz A(t) are analytic on T, and that A is primer-compatible.
Then u is a minimum of J[u] = f"' | u(2) | dt over U subject to the conditions (18 - 20) if and only if there ezists a real number

to

£, > 0 and X € R*™ such that ¢(t) = R(t)T\ for each t € T and
y(t) = o(t) [<I>(t‘,)'1 Yo+ ﬂ/ R(r)u(r)dr] (teT) (24)

where ®(t) is any fundamental matriz associated with A(t) for each t € T, its inverse exists and is partitioned so that o) =
(L(t), R(t)) where L(t) and R(t) are 2m x m matrices for each t € T, and either

i) X is the zero element in R*™ u(t) =0 a.e. on T, and B(t5)d(to) " yo = yy, or else

ii) A is nonzero, the eguation | ¢(t) |= 0 has at most finitely many solutions on T, y(ts) = ys, and

()=~ 53 1) (25)
a.e. on T where either the equation | q(t) |= £o/8 has at most finitely many solutions on T and
=10 ld)i< &/B
“”‘{Liﬂnb t/8 (26)

a.e. on T, or else it is satisfied identically on T and 0 < f(t) < 1 a.e. on T. Moreover AT(®(t)™ y(t) — (o) 1yo) = -8 f‘: |
9(r) | f(r)dr <0 (t € T). In particular, AT(@(ts) ys — B(to)v0) < 0 and equality holds if and only if f(t) = 0 a.e. on T.

Remark 1: The final condition establishes a geometric restriction on the vector A € R2™. If we define the function
z: T — R°™ by 2(t) = ®(t)"'y(t) — ®(to)yo then A is restricted by the boundary condition ATz(t;) < 0. Moreover X is
restricted by the whole trajectory, i.e. AT2(t) < 0 (¢ € T') and, upon differentiating, we obtain AT:(2) = — | ¢(¢) | f(¢) a.e. on T.
This shows that X is further restricted by the tangent vector to z(t)i.e. AT2(t) < 0 a.e. on T. Finally we observe that ATz(t) is
monotone decreasing on T. All of these conditions place restrictions on the shape and location of an optimal trajectory.

Remark 2: If the real number £, whose existence is asserted by this theorem is zero, then 1) cannot hold; therefore (25,
26) of i) must hold where (26) requires that f(t) =1 a.e. on T. A solution where £, = 0 is called an abnormal solution.

On the other hand, a solution in which £, > 0 is called a normal solution. For normal solutions the constant I,/ can be
absorbed by the function ¢ [22]. Effectively, this is equivalent to setting £, = f# in the preceeding theorem. For normal solutions
the equation | ¢(2) |= 1 either has at most finitely many solutions on T and (26) is replaced by

f@) ={ 0, lg(¥)l< 1 (27)

L le@® > 1

a.e. on T, or else
la(t) =1 (t€T) (28)

and fis any real valued measurable function satisfying
0< (1) <1 (29)

a.e. on T such that (24, 25, 20) are satisfied.
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3.3 Singular Solutions

We shall say that a normal solution of the problem defined by (18 - 21) is singular if (28) holds, otherwise we say that it is
nonsingular. Since (28) cannot hold for abnormal solutions, we shall also call them nonsingular. It follows from the preceeding
theorem that (27) must hold for normal nonsingular solutions or else u(t) = 0 a.e. on T. For this reason and the continuity of
g we can say that a normal nonsingular solution consists of thrusting intervals and coasting intervals separated by points on T
called switches. It is sometimes convenient to refer to the switching function as the real valued function s on T defined by

s(t) =1 q(#) | 1. (30)

The thrusting intervals are determined by the condition that the switching function is positive; similarly a negative value
determines a coasting interval. A switch is a zero of the function s such that every open interval containing it also contains
points where s is positive and points where s is negative. The preceeding theorem asserts that there are at most finitely many
switches. The number of switches for a given interval T is not known, even for the linearized problem of a spacecraft near a
circular orbit [28]. Since Theorem 3.1 shows that it is impossible to have s(t) = 0 on a subset of T of positive measure and also
s(t) # 0 on another subset of T of positive measure, we do not need to define singular solutions on a subset of T'. This property
is lost, however, if the differential equation (18) is replaced by certain nonlinear differential equations such as those representing
spacecraft trajectories in a Newtonian gravitational field, as discovered by Robbins [30] who found singular and nonsingular
regimes on the same interval. If a solution is singular then (29) is valid a.e. on T, but the form of the function f is not specified.
For this reason one might suspect that singular solutions to a boundary value problem are not unique. We shall show that this
is the case'for a certain large class of singular solutions. A singular solution is called an intermediate thrust solution if there
exists a measurable subset S of T of positive measure such that

0< f(t) <1 (31)

for each t € S. We shall show that the intermediate thrust solutions are degenerate in the sense of the following theorem. This
type of degeneracy was first discovered by La Salle [31] in the problem of time optimal control of linear systems. The theorem
generalizes previous results based on linearized equations about a satellite in circular orbit [32]. An earlier observation of the
degeneracy of singular solutions near a circular orbit was nfade by Marec [19].

Theorem 3.2 Suppose that the assumptions of Theorem 3.1 are satisfied. If the problem of minimizing Ju] = f" | u(t) | dt

to
subject to (18 - 20) has an intermediate thrust solution, then it has infinitely many intermediate thrust solutions.
The proof can be found in [22].

3.4 The Two Point Boundary Value Problem

In order to apply Theorem 3.1 one must solve a two-point boundary-value problem. A value of the element X € R2™ must be
found such that the trajectory (24) satisfies the terminal condition (20). Specifically A defines the primer vector function g,
which for normal nonsingular solutions defines the control function u through (25,27), establishing the trajectory through (24).
We see therefore that the terminus y(s) of the trajectory is a function of A € R2™. The terminal condition (20) can therefore
be viewed as the solution of 2m nonlinear equations in the 2m components of A.

Newton’s method is a well known computational method for the solution of several nonlinear equations in several variables,
but reliable numerical convergence to a root requires knowledge of the approximate location of the root. We use a method
of approximating the location of the root through the solution of the related impulsive problem [21]. The related impulsive
problem provides a very good approximation if the number 8 in (18) is sufficiently large. The mathematical justification that
the unbounded thrust problem can be viewed as the limit of the bounded thrust problem as 3 tends to infinity is due to Neustadt
[24]. The remarkable accuracy of the root for large values of 3 is also partly due to the fact that the form of the primer vector
function is found to be identical for both problems! Compare ¢ in Theorem 3.1 with its corresponding definition in section
2.2.1 Having solved the boundary-value problem for a large value of 8, one can then successively lower the value of 3, solving
the boundary value problem at each step, until the solution is reached for the designated value of 8. The whole sequence
can usually be performed with only a microcomputer. The effectiveness of approximating a bounded thrust problem by an
impulsive one and then lowering the bound in steps to solve the boundary value problem was demonstrated by Handelsman in
1966 [33]. Starting iteratives for solution of the linear bounded thrust minimization problem can be obtained from solution of
the related linear impulsive problem. A very attractive short cut is available, however, for many of the most useful problems
in rendezvous and orbital maneuvers of spacecraft. For many problems in which t; — to,| vo |, and | vy | are not too large,
nonsingulai bounded thrust solutions consist of at most two short duration thrusting intervals separated by a relatively large
coasting interval. Starting iteratives are obtained for these problems from the related impulsive problem having at most two
impulses at the end points, an initial increment Av, € R™ at t, and a terminal increment Avy € R™ at ty. Computation of
Av, and Avy requires only the solution of the following set of 2m linear equations as determined by (14) and in [21]

R(to)AUo + R(t,)Av, = Q(t;)“ly! - Q(to)—lym (32)
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3.4.1 Algorithm for Computation of Optimal Trajectories Having Two Short Thrusting Intervals

We now outline an algorithm for computation of certain two-point boundary-value problems associated with the solution of the
optimal linear bounded thrust problem. The method is applicable to problems in which yo, ys, and T satisfying the following:

1. A nonsingular solution over the interval T exists connecting the points y, and y; and these points are not sufficiently
close to points in which the only solutions are singular. It has been shown that, in some situations, the only solutions
connecting y, and y; are singular [32], and in these situations the algorithm is not applicable. Since the definition of ¢ in
Section 2.2.1 and (28) show that singular solutions are characterized by

ATRWRW)A=1 (teT) (33)

it is frequently possible to determine which elements A € 2™ determine singular solutions and avoid those cases.

2. The magnitudes | v, |,| vy |, and t; — ¢, are small enough that nonsingular solutions consist of relatively short initial and
terminal thrusting intervals separated by a relatively long coasting interval. It has been shown for the linear problem of
optimal maneuvers near circular orbit that given any nontrivial interval T there are boundary values where more than
two thrusting intervals occur; also more can occur for large values of ¢ 7 —to [8]. It is conjectured for that problem that
no more than four thrusting intervals can occur during one period of the circular orbit [28]. For problems such as these
the algorithm is not applicable, and the boundary-value problem is more difficult.

The algorithm is outlined below. The process should generally begin using a much larger value of the number 8 than is
given in the problem.

Step 1. The linear system (32) is solved for Av, and Avy. In some cases the 2m x 2m matrix (R(t.), R(t;)) is singular. In
these cases the value of t; should be changed by a small amount so that the resulting matrix is nonsingular.
Step 2. The length of the initial and terminal thrusting intervals At, and Aty are approximated by

Ato =| Avo | /B, Aty =| Avy | /8.
The switches ¢, and t,; that define the coasting interval are
t,o =1, + At,, lyy =15 — Aif.

Step 3. The values t, and t; are replaced in (32) respectively by t,, and t,;, and steps 1 and 2 are repeated. If the
magnitude of the difference in sucessive values of t,, and ¢, s satisfies a specified tolerance we proceed to step 4, otherwise steps
1 and 2 are repeated. If the tolerance is not satisfied after a specified number of loops, the value of B can be increased and the
process can begin again at step 1.

Step 4. The current values of Av, and Av; are used to calculate the primer vector at the current values of ts0 and t,4
respectively.

(tso) = —Avo/ | Avo |, ¢(tsy) = —Qvs /| Aoy |.

These equations hold for the related impulsive problem defined on the interval [tsos ta] [21].
Step 5. Utilizing the definition of ¢ in Section 2.2.1 we can find the element A by solving the linear equations

(R(tao),R(tsf))T/\ = ( Q(tso) ) )

q(tss)

If the matrix of coefficients is singular a very small adjustment in £, s is made, and the system is then solved for .
Step 6. Knowing X, the primer vector and its derivative are determined. The control function u can be calculated from
(25) where f(t) is zero on the interval [t,o,t,s] and f() = 1 otherwise. The vector ¥(ts) is obtained through (11). If numerical
integration of the differential equations describing y and ¢ is preferred, then the initial values of the primer and its derivative
are obtained from
g(to) = R(to)TX, ¢'(to) = R'(to)T A

Step 7. The above yields y(ts). If this is sufficiently close to a root of the equation y(ts) — ys =0, then Newton’s method
with iteration on A can be applied to determine a root. Standard commercial packages are available using shooting methods for
numerical determination of the root, as well as performing numerical integration of the differential equations for ¢ and y if this
approach is preferred, and solving the systems of linear equations used herein [34]. After determination of the root, the value of
B is lowered, and a root is again found using the preceeding solution for starting iteratives. This process is repeated until 8 is
lowered to the correct value.
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3.4.2 Spacecraft Maneuvers Near Circular Orbit

We present some of the results for a 90 minute circular satellite orbit (w = 2x/3600 rad./sec.), a spacecraft mass of 3400kg, and
a flight time of 600 sec. (to = 0,y = 600). Although the maximum thrust of the spacecraft is 267N, we assumed higher values
initially, solved the boundary value problem, and successively lowered the thrust to its actual value.

A typical example of the use of this algorithm is presented in figures 1 to 8. The transition from near impulsive to a low
bounded thrust is shown graphically on the switching function curves where the portion above zero corresponds to thrusting
and the portion of the curve below zero corresponds to coasting in figures 1 to 4. The trajectories required for fuel optimal
rendezvous corresponding to these different thrust values are presented in figures 5 to 8. This particular calculation can be
started at either 4000N thrust where the maneuver requires thrusting for only 3% of the time which closely approximates the
impulsive solution, or at 1000N where the maneuver requires thrusting for 11% of the time. In either case the estimates of the
starting values of Lawden’s primer vectors are close enough to obtain a converged solution. The thrust is then systematically
lowered after each converged solution until a thrust of 267N is reached that requires thrusting for 65% of the maneuvering time.

In general the starting primer vectors change very slowly as the maximum thrust is changed as long as the magnitude of
thrust is large enough for the thrusting time to be less than 10% of the flight time. When the impulsive calculation predicts
thrusting times greater than 20% of the flight time, then the changes in the magnitude of thrust between converged solutions
produce rapidly increasing changes in the starting primer vectors. As the thrusting time approaches 50% of the flight time,
progress becomes difficult unless the thrust magnitude is limited to small changes between converged solutions.

The calculations were made on an IBM PS/2 Model 50 computer which is on a Token Ring Network with IBM Personal
Computer DOS Version 3.30. The programs are written and compiled with Microsoft(R) Fortran Optimizing Compiler Version
4.10. The calculations are in single precision.

4 A Fundamental Matrix Solution for Spacecraft Maneuvers Near a
General Keplerian Orbit

4.1 Lawden’s Integral and Some Previous Work for Noncircular Keplerian Orbits

As early as 1954 Lawden [35] introduced a change of the variable from time to the true anamaly in describing the equations of
motion of a rocket under the action of an inverse square law of force, and in order to evaluate his primer vector during a null
thrust (Keplerian) interval, he introduced the integral

18) = / ’ & (34)
6o (1 +ecos £)2sin® €

where 8 denotes the true anamaly at time t and 8o denotes its initial value at time 2. In 1963 this integral appears again in his
book [25] in connection with the solution of his equations (5.30) - (5.32) which determine the transformed primer vector along
a Keplerian interval.

These same equations, with only minor modifications, appeared at approximately the same time in the work of De Vries
[9] to describe the relative motion of two nearby points in elliptical orbits. Except for changes in the coordinate systems, a
nonhomogeneous version of these equations was used by Tschauner and Hempel [10] to describe the rendezvous of a spacecraft
with a target in elliptical orbit. These equations were used again by Tschauner [14] and were investigated through a change of
variable from the true anamaly to the eccentric anamaly. Restricted or generalized forms of these equations were employed by
Shulman and Scott [11], Euler and Shulman [13], and Euler [12] for rendezvous of a spacecraft with an object in elliptical orbit.
The approach of Tschauner and Hempel, as used by Weiss [15] in 1981 was found to be effective in constructing two-impulse
solutions to rendezvous problems involving objects in elliptical orbits of high eccentricity [16]. In all these studies, the solution
of Lawden’s equations was not investigated through the use of the integral J () of Eq. (34).

Eckel’s paper [36] of 1982 returns to the integral I(§) with Lawden’s equations to determine the primer vector and solve
the problem of optimal impulsive transfer between noncoplanar elliptical orbits. Recently Carter and Humi [17], and Carter [29]
used this integral in solving Lawden’s equations to determine both the primer vector and the structure of an optimal rendezvous
of a spacecraft with an object near a point in general Keplerian orbit.

The previously mentioned studies demonstrate a variety of applications and interpretations of Lawden’s equations. They
also indicate considerable variation in the form of the solution of these equations.

We prefer those forms which include the integral I(9) because it appears naturally in the most straightforward approaches
to solving Lawden’s differential equation. This integral is singular, however, at values where the true anamaly is a multiple
of x. Even though these are removable singularities, they may lead to computational instabilities in the solution. Especially
bothersome is the fact that computational problems can occur where the true anamaly is near zero. These problems are avoided

in the work of Tschauner and Hempel [10,14] and others [11-13, 15] who use a form of solution that does not involve I(8), but
their work is confined to elliptical orbits.
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The approach presented in this paper is to modify the original form by replacing I(6) by a related integral J (8), thereby
removing all singularities and computational instabilities. The resulting solution, in terms of J(8), is identical for hyperbolic,
parabolic, or noncircular elliptic orbits, but the particular case determines the nature of the closed-form evaluation of J(8).

4.2 Transformed Equations of a Spacecraft near Keplerian Orbit

We consider a rotating coordinate frame centered at a point moving in a Keplerian orbit about a central attractive body. The
positive z, axis is directed away from the central body, the positive z; axis is perpendicular to it and opposes the direction
of the motion, and the z3 axis completes a right handed coordinate system. We consider the equations of motion of a point
mass spacecraft relative to this coordinate system in which the Newtonian gravitational force function has been linearized about
the point in Keplerian orbit. The independent variable is the true anamaly 8 defined on the closed interval 8o < 8 < 4y
which we denote by ©. All vectors are assumed to be elements of three dimensional Euclidean space. The position vector
z(8) = (z1(8), z2(8), za(9)) of the spacecraft in this coordinate system is transformed to the vector z(8) = (21(8), 22(9), z3(9))

by the equation
z(8) = r(6)z(9) (35)
where
r(8) = 1 + ecos(8) (36)
and e denotes the eccentricity of the Keplerian orbit.

This development which is presented in detail in previous work [17] results in the following transformed equations of the
spacecraft

2} (8) = 222(8) + a1(9)

2% (0)= H—e"’c;ﬁzz(ﬂ) —221(8) + a2(8)

23 (8) = —23(8) + a3(6) (37
where the prime indicates differentiation with respect to 8, and the vector a(8) = (a1(8),a2(6), a3(8)) is given by
a(8) = B(6)u(6) (38)
where
B(8) = k/r(6)". (39)

In this expression the positive constant k is LT /u*m where L is the magnitude of the constant angular momentum of
the object in Keplerian orbit divided by its mass, T}, is the maximum magnitude of the thrust of the spacecraft, s is the product
of the universal gravitational constant and the mass of the central body of attraction, and m is the mass of the spacecraft. The
vector u(8) = (u1(8), u2(8), u3(6)) represents the normalized thrust of the spacecraft and is subject to the constraint

|u(d) IS 1. (40)

Since this investigation is restricted to linear equations, we shall assume that the mass m is constant. Previous investigations,
however, have taken into account the change in mass of the spacecraft as propellant is consumed [29,18].

Equations (37) are essentially the equations of Tschauner and Hempel [10], and their homogeneous form represents essen-
tially the equations of De Vries 9] and Lawden [25].

Here the class of admissible control functions is the set of all Lebesque measurable vector valued functions that satisfy (40)
a.e. on ©. The optimal rendezvous problem associated with a point in Keplerian orbit is defined as the determination of an
admissible control function « that minimizes the cost function

1 | u(8
J[u]=/9° 'r((o))zlda (41)

subject to the conditions (37-40) which are valid a.e. on © and the end conditions
z(Bo) = 20, z'(90) = %o,

2(05) = 25,2/ (85) = vs (42)
where the vectors zo and z; define the initial and terminal values of the transformed position z, and vo and vy define the initial
and terminal values of its derivative.

Theorem 3.1 is not directly applicable to this problem because (38) and (4.2) do not conform to (18) and (21) respectively.
The theorem can be generalized to include this problem, however, and the results are very similar if the primer vector ¢(9) is
replaced by the transformed primer Q(8) = ¢(6)/r(6) as in previous work. [17,29]
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If we define the state vector function y : © — R° by ¥(8) = (2(8)7, 21(8)T)T, then equations (37-39) can be put in a form
similar to (18) where 3(8) replaces 8 and

0 o 0 1 0 0
0 0 0 o6 1 0
0 o0 0 0 o0 1
A0 =1, 0 0 2 0 (43)
0 3/r6) 0 -2 0 o0
0 0 -1 0 o0 0

Here @ replaces t and © replaces T". By defining yo = (23, v7)T and Y5 = (zg',t:}‘)T the boundary conditions (41) satisfy (19,
20).

In order to obtain a fundamental matrix solution ®(9) associated with this problem, we solve the homogeneous form of
the system (37), that is, we find the complete solution where a(8) is identically zero. This solution was found by Lawden [35]) in
terms of the integral I(6). Using a similar form of solution [17], we obtain

21(8) = —b17(8)” — b2[r(8)*1(6) + cotb] — bssinb[1 + r(6)] + bs

22(8) = er(0)sinb[by + b,1(6)] — bar(8)cosh
23(8) = bscosd + bgsind (44)
where b1, b, b3, by, bs, be are arbitrary constants of integration.

These equations can be used to define the relative motion of two nearby points in noncircular Keplerian orbits by trans-
forming from z(6) to z(f) using (35), and is a generalization of the work of De Vries. [9].

4.3 New Form of the Rendezvous Equations and the Resulting Fundamental Matrix
Solution

The Equation (43) has removable singularities at integer multiples of = which we denote by nx. These singularities appear in

the expressions I(6) and cotf. Computation is troublesome at or near these singularities. These computational instabilities can
be removed. If we integrate (34) by parts, it becomes

1(8) = 2eJ(8) — % +c (45)

which holds except at the singularities of 1(§) where c is a constant of integration and

o
cosé
J(9) = —d§. 46
0= 25 (46)
It is observed that the integral J(0) has no singularities. It follows from the continuity of J(#) that
2eJ(nr) +c= lim |1(6)+ <20 (47)
eJ(vr) +o= Jim |10)+ T

so that the singularities in (43) are removed. It follows that there are no singularities if solutions of (37) are stated in terms of
J(6) instead of I(#). [18] With these changes the solution (43) of the unpowered equations of motion becomes

21(0) = —1(8)°[b1 + 2b2eJ(8)] — ba[1 + r(8)]sind + by

22(8) = r(8)sinb[bre + 2b2¢’ J(9)] — cosO[rb(z—;) + bar(6)]

23(8) = bscosf + besind. (48)

These equations are valid for all noncircular Keplerian orbits. The integral J(#) can be evaluated in closed form, and the
particular form is determined from the type of orbit. Equations (47) are more useful than equations (43). If we differentiate
(47) we obtain the vector-valued function z’ : © — R*. The pair (2(8)7,21(8)T)T defines the state vector ¥(0). The equation
z(#) from (47) and its derivative z’ (9) together are represented by

y(6) = 2(6)b (6c0) (49)
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where b = (b1, b2, b3, by, bs, bs)T is a constant vector in R and ®(9) is a fundamental matrix solution associated with A(8). Tt
follows from (47) that

~r(8)? -3r(8)2J(8) —(1 4 r(8))siné 1 o o
er(8)siné 2er(8)sin8J(8) — cos 8/r(8) —r(9)cos® o 0 o
) ) 1] [ cos 8 siné
®(0) = 2er(0) sind 4er(8) 2in 0J(0) — 2cos @/r(8) e—3r(0)cosd o o o . (50)
er(8)cosd — e23in20  2e(r(8)cosd — esin38)J(8) + '——1—7—1‘”’ t-({-:)ecoa’ (r(8) 4+ ccosb)siné 0O ] ]
(] o o [ - sin @ cos 8

Our goal has been to determine this matrix function. If the problem is restricted to a plane, we delete the third and sixth row and
the fifth and sixth column. The resulting 4x 4 matrix function is a fundamental matrix solution for the planer problem. There
are several approaches® to the problem of inverting a fundamental matrix solution and applying a generalization of the preceeding
theory. These should result in new methods of computing either impulsive or bounded thrust trajectories of a spacecraft near
Keplerian orbit. Further results in this area are forthcoming.

4.4 Closed-Form Evaluation of The New Integral

We show here that the integral J(8) can be evaluated easily if we transform from the true anamaly 6 to the eccentric anamaly
E for elliptical orbits or its analog H for hyperbolic orbits.

4.4.1 Elliptical Orbits
For orbits in which 0 < e < 1 we have the relationship between the eccentric anomaly E and true anomaly @ given by

cosE —e
0= T &1

where sin @ and sin E always have the same algebraic sign. Changing the variable to E in (45) establishes the much simpler
integral
E
J@)=(1-¢e)"*? [ (1-ecost)(cos& —e)dé (52)
Eo
where Ep is the eccentric anomaly at 6o. This integral is easily evaluated using elementary methods to obtain
J(@) =~ - e*)™s/? [%EE —(1+4€)sinE+ %sin EcosE + C] (53)

where C is an arbitrary constant.

4.4.2 Hyperbolic Orbits

In a similar way we can evaluate J(8) for orbits in which e > 1. We introduce the analog of the eccentric anomaly H by the
relationship

e—cosh H

= ———F——
o8 ecosh H —1 (54)
where sin 8 and sinh H always have the same algebraic sign. With this substitution the integral defined by (45) becomes
H
J(8) = (2 —1)75/? / (e cosh & — 1)(e — cosh £)d¢ (55)
Hp

where Hy denotes the value of H at 8. This integral also is easily evaluated. The result is

3eH
2

esinh H

J(6) = —(¢ —1)~*/? [ — (1 +¢”)sinh H + cosh H + C] (56)

where again C denotes an arbitrary constant.

4.4.3 Parabolic Orbits

For the case in which e = 1, the integral J(8) can be evaluated directly using the identity cos§ = 2cos® § — 1. The result is

J(8) = ta'n,2 - itansg +C (57)

!

4 2 20

where C is again an arbitrary constant. Since this expression is only defined on the region r(4) > 0(i.e.cos§ > —1), it has no
singularities.

3This matrix was inverted by Prof. Mayer Humi of the Mathematial Sciences Department at Worchester Polytechnic Institute using
MAXYSMA. The author has also inverted this matrix using the adjoint system to that defined by (42). Numerical inversion is also feasible.
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